APPENDI X A

Quick Reference

INTEGER INSTRUCTION SET

Name Syntax Space/Time
Add add Rd,Rs, Rt 171
Add Immediate addi Rt, Rs, Imm 171
Add Immediate Unsigned addiu Rt, Rs, Imm 1711
Add Unsigned addu Rd,Rs, Rt 1/1
And and Rd,Rs, Rt 171
And Immediate andi Rt, Rs, Imm 171
Branch if Equal beq Rs, Rt, Label n
Branch if Greater Than or Equal to Zero bgez Rs, Label 17
Branch if Greater Than or Equal to Zero and Link bgezal Rs,Label 7
Branch if Greater Than Zero bgtz Rs, Label 171
Branch if Less Than or Equal to Zero blez Rs,Label 171
Branch if Less Than Zero and Link bltzal Rs, Label 1711
Branch if Less Than Zero bltz Rs, Label 1/1
Branch if Not Equal bne Rs, Rt, Label 11
Divide div Rs, Rt 1/38
Divide Unsigned divu Rs, Rt 1/38
Jump i Label i
Jump and Link jal Label mn
Jump and Link Register jalr Rd, Rs n
Jump Register jr Rs 17
Load Byte Lb Rt, offset(Rs) 17
Load Byte Unsigned Ibu Rt, offset(Rs) 1n
Load Halfword lh Rt, offset(Rs) 171
Load Halfword Unsigned lhu Rt, offset(Rs) 171
Load Upper Immediate lui Rt, Imm 1/1
Load Word lw R, offset(Rs) iUt
Load Word Left lwl Rt, offset(Rs) n
Load Word Right lwr Rt, offset(Rs) 171
Move From Coprocessor 0 mfc0 Rd,Cs 1n
Move From High mfhi Rd 171

Move From Low

Rd

11

N NN

Space/Time

171
171
11
11
11
11
11
11
11
11
11
1m
11
11
1/38
1/38
1
11
171
mn
L
17
m
17
m
m
m
1m
171
17
171

Macro Instructions 111

mn

Move To Coprocessor 0 mtcO0 Rt, Cd
Move to High mthi Rs 171
Move to Low mtlo Rs 111
Multiply mult Rs,Rt 1/32
Multiply Unsigned multu Rs, Rt 1/32
NOR nor Rd, Rs, Rt 11
OR or Rd,Rs, Rt 171
OR Immediate ofi Rt,Rs, Imm 1/1
Return From Exception rfe 17
Store Byte sb Rt, offset(Rs) 171
Store Halfword sh Rt, offset(Rs) 171
Shift Left Logical sl Rd,Rt,sa 11
Shift Left Logical Variable sllv Rd,Rt,Rs 11
Set on Less Than slt R4, Rt,Rs 171
Set on Less Than Immediate slti Rt, Rs, Imm 111
Set on Less Than Immediate Unsigned sltiu ~ Rt, Rs, Imm 111
Set on Less Than Unsigned sltu Rd,Rt,Rs n
Shift Right Arithmetic sra Rd, Rt,sa 11
Shift Right Arithmetic Variable srav Rd,Rt,Rs 111
Shift Right Logical srl Rd, Rt, sa /1
Shift Right Logical Variable srlv Rd,Rt, Rs 1/1
Subtract sub Rd,Rs, Rt mn
Subtract Unsigned subu Rd,Rs, Rt 11
Store Word SW Rt, offset(Rs) 1/1
Store Word Left swl Rt, offset(Rs) n
Store Word Right SWI Rt, offset(Rs) 171
System Call syscall 171
Exclusive OR XOor Rd, Rs, Rt 111
Exclusive OR Immediate xori Rt, Rs, Imm 1171
MACRO INSTRUCTIONS
Name Syntax Space/Time
Absolute Value abs Rd,Rs 3/3
Branch if Equal to Zero beqz Rs, Label 171
Branch if Greater Than or Equal bge Rs, Rt, Label 212
Branch if Greater Than or Equal Unsigned bgeu Rs, Rt, Label 212
Branch if Greater Than bgt Rs, Rt, Label 212
Branch if Greater Than Unsigned bgtu Rs, Rt, Label 212
Branch if Less Than or Equal ble Rs, Rt, Label 212
Branch if Less Than or Equal Unsigned bleu Rs, Rt, Label 22
Branch if Less Than blt Rs, Rt, Label 212
Branch if Less Than Unsigned bltu Rs, Rt, Label 2/2
Branch if Not Equal to Zero bnez Rs, Label 11
Branch Unconditional b Label 171
Divide div Rd,Rs, Rt 4/41
Divide Unsigned divu Rd,Rs, Rt 4/41
Load Address la Rd, Label 212
Load Immediate li Rd, value 212
Move move Rd,Rs 1/1
Multiply mul Rd, Rs, Rt 2/33
Multiply (with overflow exception) mulo Rd,Rs,Rt 7137
Multiply Unsigned (with overflow exception) mulou Rd,Rs, Rt 5/35
Negate neg Rd,Rs 11

Appendix A Quick Reference

Negate Unsigned negu Rd,Rs 171
Nop nop 171
Not not Rd,Rs 1/1
Remainder Unsigned remu Rd,Rs, Rt 4/40
Rotate Left Variable rol Rd,Rs, Rt 4/4
Rotate Right Variable ror Rd,Rs, Rt 4/4
Remainder rem Rd,Rs, Rt 4/40
Rotate Left Constant rol Rd, Rs,sa 3/3
Rotate Right Constant ror Rd,Rs, sa 3/3
Set if Equal seq Rd,Rs, Rt 4/4
Set if Greater Than or Equal sge Rd, Rs, Rt 4/4
Set if Greater Than or Equal Unsigned sgeu Rd,Rs, Rt 4/4
Set if Greater Than sgt Rd,Rs, Rt 171
Set if Greater Than Unsigned sgtu Rd,Rs Rt 1/1
Set if Less Than or Equal sle Rd, Rs, Rt 4/4
Set if Less Than or Equal Unsigned sleu Rd,Rs,Rt 4/4
Set if Not Equal sne Rd,Rs, Rt 4/4
Unaligned Load Halfword Unsigned ulh Rd, n(Rs) 4/4
Unaligned Load Halfword ulhu Rd,n(Rs) 4/4
Unaligned Load Word ulw Rd,n(Rs) 212
Unaligned Store Halfword ush Rd,n(Rs) 3/3
Unaligned Store Word usw Rd,n(Rs) 2/2
SYSTEM 1/0 SERVICES
Service Code in $v0 Argument(s) Result(s)

Print Integer 1
Print Float 2
Print Double 3
Print String 4
Read Integer 5
Read Float 6
Read Double 7
Read String 8
Sbrk 9
Exit 10

$a0 = number to be printed

$£12 = number to be printed

$£12 = number to be printed

$a0 = address of stting in memory

$a0 = address of input buffer in memory
$al = length of buffer (n)
$a0 = amount

number returned in $v0
number returned in $f0
number returned in $f0

address in $v0

The system call Read Integer reads an entire line of input from the keyboard up to and
including the newline. Characters following the last digit in the decimal number are ig-
nored. Read String has the same semantics as the Unix library routine fgets. It reads up
to n — 1 characters into a buffer and terminates the string with a null byte. If fewer
than n — 1 characters are on the current line, Read String reads up to and including
the newline and again null terminates the string. Print String will display on the termi-
nal the string of characters found in memory starting with the location pointed to by the
address stored in $a0. Printing will stop when a null character is located in the string.
Sbrk returns a pointer to a block of memory containing n additional bytes. Exit termi-

nates the user program execution and returns control to the operating system.

ASSEMBLER DIRE

.align n

.ascii strin
.asciiz stri
.byte b1,...
.data <adc

.double d]

.extern Sy

float f1, ..
.globl Syn

Jhalf hi,...
Jkdata <aq

ktext <ad

.Space n

text <add

word wl,
word w:1

*Strings a
conventio
words anc
followed 1
ulator. Nt
ed as hex:

171
171
1
4/40
4/4
4/4
4/40
3/3
3/3
4/4
4/4
4/4
171
171
4/4
4/4
4/4
4/4
4/4
212
3/3
212

Result(s)

nber returned in $v0
nber returned in $£0
nber returned in $f0

Iress in $vO

:eyboard up to and
mal number are ig-
1e fgets. It reads up
null byte. If fewer
p to and including
splay on the termi-
n pointed to by the
cated in the string.
1 bytes. Exit termi-
1g system.

Assembler Directives 113

ASSEMBLER DIRECTIVES

.align n Align the next datum on a 2" byte boundary. For example,
.align 2 aligns the next value on a word boundary. .align 0 turns
off automatic alignment of .half, .word, .float, and .double di-
rectives until the next .data or .kdata directive.

.ascii string* Store the string in memory, but do not null-terminate it.

.asciiz string* Store the string in memory and null-terminate it.

.byte bl,...,bn Store the n 8-bit values in successive bytes of memory.

.data <addr> Subsequent items are stored in the data segment. If the optional

argument addr is present, subsequent items are stored starting at
address addr. For example: .data 0x00008000

.double d1,..,dn Store the n floating-point double-precision numbers in succes-
sive memory locations.

-extern Symb size Declare that the datum stored at Symb is of size bytes large and
is a global label. This directive enables the assembler to store the
datum in a portion of the data segment that is efficiently ac-
cessed via register $gp.

float f1, ..., fn Store the # floating-point single-precision numbers in successive
memory locations.

.globl Symb Declare that label Symb is global so it can be referenced from
other files.

.half hl,... hn Store the n 16-bit quantities in successive memory half words.

kdata <add> Subsequent items are stored in the kernel data segment. If the

optional argument addr is present, subsequent items are stored
starting at address addr.

ktext <addr> Subsequent items are put in the kernal text segment. In SPIM,
these items may only be instructions or words. If the optional ar-
gument addr is present, subsequent items are stored starting at
address addr (e.g., .ktext 0x80000080).

.Space n Allocate n bytes of space in the current segment (which must be
the data segment in PCSpim).
text <addr> Subsequent items are put in the user text segment. In SPIM,

these items may only be instructions or words (see the .word di-
rective below). If the optional argument addr is present, subse-
quent items are stored starting at address addr (e.g., .data

0x00400000).
-word wl,..., wn Store the n 32-bit quantities in successive memory words.
word w:n Stores the 32-bit value w into n successive memory words.

*Strings are enclosed in double quotes (). Special characters in strings follow the C
convention: newline: \n, tab: \t, gquote: \".Instruction op-codes are reserved
words and may not be used as labels. Labels must appear at the beginning of a line
followed by a colon. The ASCII code “back space” is not supported by the SPIM sim-
ulator. Numbers are base 10 by default. If they are preceded by 0x, they are interpret-
ed as hexadecimal. Hence, 256 and 0x100 denote the same value.

